img33
img42
img42

绝缘油介质损耗因素及体积电阻率分析仪注意事项

绝缘油介质损耗因素及体积电阻率分析仪注意事项一、  

绝缘油体积电阻率测试仪是依据GB/T5654-2007《液体绝缘材料 相对电容率、介质损耗因数和直流电阻率的测量》设计制造的高精密一体化检测仪器。主要用于绝缘油等液体绝缘介质的直流电阻率的测量,内部集成了介损油杯、温控仪、温度传感器、介损测试电桥、交流试验电源、标准电容器、高阻计、直流高压源等主要部件。该仪器应用先进的测控技术,全自动完成升温、控温、高速数据采样、运算、显示、打印及存储等过程。先进的测量原理和高度数字化技术,使您的工作变得更加轻松、便捷。

仪器内部采用全数字技术,全部智能自动化测量,配备了大屏幕彩色触摸屏,全中文菜单,每一步骤都有中文提示,测试结果可以打印输出,操作人员不需专业培训就能熟练使用。

绝缘油介质损耗因素及体积电阻率分析仪注意事项二、特点

1. 高度自动化,升温、测量介损 、测量电阻率可一次完成;

2. 油杯采用符合国标GB/T5654-2007的三电极式结构,极间间距2mm,可消除杂散电容及泻漏对介损测试结果的影响;

3、仪器采用中频感应加热,PID控温算法。该加热方式具备油杯与加热体非接触、加热均匀、速度快、控制方便等优点,使温度严格控制在预设温度误差范围以内。

4、采用先进的DSPFFT技术,确保数据稳定、准确、可靠。

5、内部标准电容器为SF6 充气三点极式电容,该电容的介损及电容量不受环境温度、湿度等影响,使仪器精度在长时间使用后仍然得到保证。

6、大屏幕彩色触摸屏,中文操作菜单,人家对话方便,操作简洁明了,一目了然。

7、具有开盖断高压,油杯高低压电极短路等温馨提示,消除隐患,确保操作人员的人和设备的正常运行。

8、自带实时时钟,测试日期、时间可随测试结果保存、显示、打印;设备可以显示环境温度,对试验环境实时进行检测。

9、自动存储测量数据,可存储100组测量数据。

10. 空电极杯校准功能。测量空电极杯的电容量和介质损耗因数,以判断空电极杯的清洗和装配状况。校准数据自动保存,以利于相对电容率和直流电阻率的精准计算。

11.设备自动化程度高,可自动完成油杯清洗;

绝缘油介质损耗因素及体积电阻率分析仪注意事项三、产品主要技术指标

测 量 范 围:

电容量       5pF200pF

相对电容率   1.00030.000

介质损耗因数 0.00001100

直流电阻率  2.5 MΩm20 TΩm

测 量 精 度: 

电容量       ±(1%读数+0.5pF)

相对电容率   ±1%读数

介质损耗因数 ±(1%读数+0.0001)

直流电阻率   ±10%读数

     率:

电容量       0.01pF

相对电容率   0.001

介质损耗因数 0.00001

  温 范 围: 0125

温度测量误差: ±0.5

交流实验电压: 02000V  连续可调,频率50Hz

直流试验电压: 0500V     连续可调

      耗: 100W

外  型 尺 寸: 420mm*380mm*385mm

      量:  21Kg

绝缘油介质损耗因素及体积电阻率分析仪注意事项四、使用条件

1. 环境温度     040℃

2. 相对湿度    ≤80%

3. 工作电源     AC 220V1 ± 10%)

4. 电源频率     50 Hz (1 ± 10%)

5. 功率消耗    200 W

绝缘油介质损耗因素及体积电阻率分析仪注意事项五、面板说明

1. 液晶屏显示日期、时间、操作参数、测试结果、操作菜单提示等相关信息;

2.打印机打印单次及多次测试结果的平均值;

3.电源插座及开关良好插接AC 220V 50Hz电源线;电源开关控制仪器电源通断

4.油测试油样的容器

5.测量信号插座用于插接测量信号线

6. 温度信号线打开后放入或取出油杯,关闭后方可进行测试;

7. 接地柱可靠的地线连接柱

六、操作步骤图解

1.将测量信号线和温度信号线如图2连接完好。温度信号线置于油杯中心部位的插孔内;

2、将地线与设备连接完好,接通电源线,打开电源开关,设备会自动进入主界面如图3

3.做试验之前,先要将油样注入测试油杯内,油杯有两个口,一个(粗)是注油口,一个(细)是液位管,用于显示液面的高度,我们在注油之前应打开主界面中的漏油开关,让被测油样将油杯进行一下冲洗,点开漏油开关,开关前面会显示√,将待测油样缓慢导入油杯,油样会自动由排液管流出,当清洗完毕后点击漏油开关,关闭排油系统,当油样进液口和液位管高度持平时即可。

4、在图界面下,按试验条件键,设备进入下一个菜单如图4

5、在图4界面中,可以分别对试验参数进行设置,图中是设备的默认参数,如需改动,只要点击需要改动的参数,就会自动弹出一个小键盘,如图5,在小键盘中直接输入需要的参数并点击小键盘上的确认键即可,选择打印的时候只要点击光标处就可以在是和否之间切换。设定好后点击确定即可回到图3主界面。

6、在图3界面下,点击空杯测试进入图6,空杯测试主要是对油杯注油前的干净程度和装配进行验证,可以选择介质损耗因数和相对电容率及体积电阻率,点击测试项目前面的光标即可选择测试还是不测试。空杯介损值越小越好,在图6中选择完测试项目后点击确定后即可进入图7,图7中设备可以在设定的90℃进行测量,也可以点击立即测试,在当时温度下测量。

7、空杯检测完毕没有问题后,将油杯的内电极取出置于油杯架上,取40ml待测油样置于油杯中(注意:注入油样时一定注意不能出现气泡,应沿着杯壁缓缓注入),油样注入后,再将油杯的内电极慢慢的放到位。(动作要慢一些,防止动作太快,排气不及时,使油样溢出),接好测量信号线和温度信号线,点击图3中的自动测试,进入图6界面和图7界面,一般测油是都按照规程90℃测量,同样也可以选择立即测试,在当前温度下测量。

8、点击图3中的数据查询,进入图8界面,点击上页和下页进行翻阅,也可以点击打印,对数据进行打印;还可以点击删除键对数据进行删除,按退出键退回到主界面。

七、注意事项

1.遵守高压试验工作规程。

2.因仪器内部有高压及高温,在工作过程中,禁止打开油杯罩。

3.仪器在使用过程中要可靠接地。

4.要注意仪器使用环境的清洁。

5.油杯安装和清洗应严格按规定进行,否则将造成油杯放电,致使仪器无法正常工作。

6.保险管损坏,必须更换相同规格保险管。

八、仪器的成套性

1. 主机            壹台

2.油杯             壹套

3. 滲油杯          壹个

4. 油杯托架        壹个

5. 玻璃注射器      壹支

6.  测试线           壹条

7. 温度传感器      壹条

8. 电源线          壹条

9. 合格证          一份

10. 说明书         壹本

11. 出厂检验报告   壹张

12.保险管(5A    贰支

13.打印纸卷        贰卷

九、售后服务:

仪器自购买之日起一年内,属产品质量问题免费保修,终身提供维修和技术服务。如果发现仪器状况不正常或有故障出现,请您速与我公司联系,以便为您安排便捷有效的处理方案。


一、概述

在电力设备绝缘预防性试验中,要求对电力设备的绝缘油参数进行定期测量。绝缘油介质损耗及电阻率的测量是其中重要的一项,长期以来,大都采用电桥法测量,操作繁琐,测量精度受到很多因素影响,从而导致测量误差大。随着电子技术的飞速发展及电力行业对体积小、重量轻、操作方便、测量迅速、精度高的测量仪器要求,我公司参考国内外相关仪器研制出了在国内较为先进的JDC系列全自动绝缘油介损及电阻率测试仪。该仪器根据GB5654及相关标准设计制造,采用微机控制,使用方便,测量精度高,测试效率高,极大地减少人员劳动强度。

结构特点及功能简介

本仪器结构为集油杯、加热、控温、调压、自动放油功能为一体。

采用大液晶汉显,汉字打印,汉字菜单,操作简单。

空杯自动校准。

具有过压、过流、限温保护功能。

中频感应加热电极杯、短时均匀加热。

通过置于测量电极杯内的探头直接测量温度。

内含正弦波发生器,数字调压产生标准50Hz大功率测试电源。

主要技术指标

测试电压范围:02000VAC  50Hz

测试温度范围:室温~125

介损测试范围:0.000011

  量 精 度:±(示值×0.5%+0.0001

相对介电常数:±(示值×0.5%+0.1

电阻率分辨率:0.01MΩ·m

电阻率测量范围:2.5MΩ·m20TΩ·m

          率:500W

      压:AC220V±22V

      寸:470×430×380

重量:25kg

使用条件

环境温度 : 0 ~ +40

相对湿度 : ≤75%RH

面板说明

一、操作面板

1所示:

▲键:递增键

键:递减键

选择:功能参数选择

确认:功能选中

复位:中断仪器重新选择


 

二、测试面板

2所示


  杯:测试电极杯

电流信号:采集电流信号

温度信号:采集温度信号

放油开关:按下自动放油


操作方法

一、测试前准备

   1、装配

GB5654要求,将清洗干净的电极杯安装到测试面板电极杯位置,顺时针旋转外电极固定,做好密封(安装氟橡胶密封垫在外电极底部),将测试线如图2连接好。

2、开机

打开电源开关,液晶显示如图3。进入初始化界面,如图4。约等一分钟左右,进入时间设置界面,如图5。若设置实时时钟按《选择》键移动光标选择,按《▲》和《▼》键设置时间,然后按《确认》完成设置。

3、参数设置

参数设置界面如图6和图7,按《选择》键移动光标至预设定处,按《▲》和《▼》键可对温度、电压参数进行循环设置。移动光标至“√”处,按《▲》和《▼》键

选择“√”或“×”(“√”代表测试该项,“×”代表不对该项进行测试),按《确认》键完成参数设置。温度范围:室温~125℃;电压范围:AC 0V2000V



二、测试步骤

1、空杯电容测试

在参数设置界面图6中选择(测试空杯电容),按《确认》键进入图8界面。

1)升温:进入如图8界面后,仪器升温显示温度开始增加,直到预定值后开始升压;如果无需升至预定值则随时根据温度情况按《确认》键转入升压状态。

2)升压:当升温过程转入升压状态后,此时电压值在增加并调整,如图9

3)电容测试:电压升至设定值,自动转入电容测试状态,如图10,电容测试结果如图11

注:如果不测试空杯电容,请在参数设置界面(图6)中选择(不测空杯电容),按《确认》键转入电容值默认界面如图12,准备介质损耗测试。

2、介质损耗测量

将电极杯用待测油样清洗干净后按提示向电极杯中注入待测油样40mL,按《确认》键进入介损测试界面如图13

1)升温:进入如图13界面后,仪器升温开始,显示温度开始增加,直到预定值后开始升压;如果无需升至预       

2)升压:当升温过程转入升压状态后,此时电压值在定值则随时根据温度情况按《确认》键转入升压状态。

增加并调整,如图14

3)介损测量:电压升至设定值,自动转入介损测试状态,如图15所示,1分钟左右自动转入体积电阻率测试界面,      

如图16。测试完成后自动显示测试结果,按《确认》键可将介损测试结果打印输出。

3、体积电阻率测量

如图6所示,按《选择》键开始测试体积电阻率,测试完成后显示结果,按《确认》键可将体积电阻率测量结果打印输出。

操作注意事项

仪器要可靠接地。

测试过程中内部有高压及高温,禁止在通电和测试时接触电极杯、电缆和插座。

注油时,应小心操作以免将油洒入电极杯槽和操作面板。

放油时,首先将放油管连接好,将放油管出油口置于废油杯内。

若测试时出现死机现象,请按复位键,重新启动仪器。

常见故障及处理方法

开机时,电源开关指示灯不亮,请检查电源板保险芯,是否熔断。

当设备正在升压时,液晶显示“电极杯短路”,请检查电极杯是否装配合理。

当设备测出空杯电容值偏离标准值(60pF±5pF)较大时,请检查电源信号电缆保护电极盖上射频头是否松动。

当设备升温时,检测不到温度信号,请检测温度信号电缆是否连接正确。

当设备不升温时(即无中频加热特有的响声),请检查升温保险是否熔断。

电极杯清洗方法

取出电极杯内电极。

将电极杯外电极按逆时针方向拧出(注意更换外电极底部的橡胶密封垫)。

用化学纯的石油醚和苯彻底清洗油杯的所有部件(注意不要损坏射频座)。

用丙酮再次清洗电极杯,然后用中性洗涤剂漂洗干净。

5%的磷酸钠蒸馏水溶液煮沸5分钟,然后用蒸馏水洗几次。

用蒸馏水将所有部件(注意保护射频座)煮沸1小时。

将部件在温度105110摄氏度的烘箱中,烘干6090分钟。

部件洗净后,待温度降至不烫手时将其组装好。注意不要烫着手和损伤电极杯表面,保证射频座芯线与测试电极连接良好!

注:当试验一组同类没有使用过的液体样品时,只要上次试验过的样品的性能优于待测油的规定值,可使用同一个电极杯而无需中间清洗。如果试验过的前一样品的性能值劣于待测油样的测定值,则在做上一个试验之前必须清洗电极杯。

随机附件及服务

1、随机附件

1) 三芯电源线(10A     1

2) 保险管(4A            4

3) 电极杯                     1

4) 25#硅胶管(1m     1

5) 信号测试线               1

6) 温度测试线               1

7) 打印纸                      2

8) 8*2.4密封圈              2

9) 10*2.4密封圈             2

10) 14*2.4密封圈            2

11)量杯(50ml             1

2、售后服务及维修

本产品保修18个月,终身服务。

本说明书版本号V2.1201610月修订。

在经典的流体力学中,一个放置于竖直方向振动液面上的液滴,会受到自身撞击液面形成的局部波作用而产生导向性水平运动。这种由流体导航波体系中表面波引导的液滴运动,与量子力学中导航波理论描绘的量子粒子的运动情形有着惊人的相似之处。已经证实的是,流体导航波体系中的悬浮液滴能够模拟量子领域的一系列神秘行为,例如隧穿、干涉、衍射等。对这种宏观层面上波粒二象性的认识,使得流体导航波研究近年来引发科学界的重视。除了量子体系之外,物理系统中普遍存在着波动伴随的粒子运动,然而这些行为通常要么发生在极端尺度,要么需要借助特殊条件才能实现,这给相应系统中的直接观测和控制带来了巨大困难。而对于宏观的流体导航波体系,由于其驱动参数以及系统结构均可灵活变换,从而为研究波粒二象性及其他物理体系中由波场引导的运动,提供了一种易于实现的途径。
 
在此之前,已有一部分研究考查了常规流体导航波体系中单个液滴或者多个液滴的动态行为,并探索了它们与量子体系的相似性问题。然而以往对于液滴动态行为的研究通常都局限于单一粒子与导航波之间的相互作用,即液滴运动只受其自身撞击液面产生的局部导航波的导向而运动。这种单一的导航波情形将液滴运动的驱动条件限制在一个很窄的区间内。为了突破传统的流体导航波系统结构,也有研究通过调整液池的构造来改变液滴的运动,例如采用具有阶梯高度的液池,或者控制容器进行旋转等。然而这些方法均人为增加了系统结构的复杂度。因此,为了进一步扩展流体导航波理论及研究范畴,在寻找全新液滴运动模式的同时,应避免增加系统和控制的复杂程度。
 
在此项发表的液态金属导航波体系的研究工作中,作者们开创性地引入了一种具有高表面张力的全新液态金属液池-液滴系统,利用金属液池边界振荡产生的全局导航波和液滴自身的局部导航波构造复合导航波场。研究发现,当两个大小不同的金属液滴在液池上相遇时,会自锁形成共同围绕液池中心旋转的液滴对。而且液滴对之间能够实现不同的自锁距离,同时液滴对的运动轨迹被锁定在液池表面所形成的不同半径的同心环表面波轨道内。更为有趣的是,这些旋转追逐的液滴对之间的自锁距离和旋转轨道半径,体现出一系列量子化的离散数值。通过调节液滴对的自锁距离和轨道半径这一组变量集,可以实现各种各样的液滴对运动模式。
 
通过进一步的研究,还观察到液滴对的协同旋转追逐运动具有方向性:既可以由大液滴追逐较小的液滴,也可以反过来由小液滴追逐大液滴,而追逐的方向取决于两个液滴之间的自锁距离。如果两个液滴彼此相邻(短程自锁),则大液滴在后面追逐着小液滴运动;反之,如果液滴彼此远离(长程自锁),则大液滴带头在前,小液滴在后追逐,追逐方向发生反转。然而不论对于短程自锁或者长程自锁的液滴对而言,其旋转运动的中心都是液池的中心点,而不是沿着两个液滴连线的中心点,后者是在常规流体(如硅油)导航波体系中观察到的液滴绕转现象。同时需要指出的是,液态金属液滴对的追逐方向完全决定于两个液滴的自锁距离,而不受其它因素的影响)。而以往发现的液滴对追逐运动方向,是可以通过改变加速度进行调节的。这些液态金属液滴对的独特行为意味着液态金属体系隐藏着新的作用模式。
 
该研究设计了一系列实验来探究液态金属液滴对的轨道化追逐效应的背后原理。通过采用高速成像、数字图像跟踪、粒子成像测速等方法,作者们揭示了振动的液态金属液池(4和图5)和弹跳液滴的流体力学特性。通过比较几种不同模态追逐液滴对中单个液滴的竖直运动后发现,两个液滴的振动始终存在一定的相位差,大液滴撞击液面的相位总是滞后于小液滴。正是这个相位差的存在使得液滴在撞击液面时,会受到与其自锁的另一个液滴的局部导航波的影响,而产生一个水平推动力,从而导致了液滴水平方向上追逐行为的发生。同时液滴对的共同运动又会受到液池全局表面波的限制作用,从而被约束在不同的圆形轨道内。这个全局导航波的存在,是将当前系统与其他系统区别开来的根本原因所在,液态金属液滴对的轨道化旋转追逐效应,是液滴同时受局部导航波和液池全局导航波场这一复合波场的引导所致。
 
对于液态金属导航波体系的探索,一方面丰富了流体力学不稳定性的研究范畴和知识,另一方面也极大扩展了流体动力学层面波粒二象性的含义。此项工作中发现的液态金属液滴对的轨道化追逐运动,与光学系统中纳米颗粒对的运动模式具有惊人的相似之处。同时,该研究中提出的复合导航波场的理论和方法,也有望扩展到其它不同类型和规模的物理体系中,例如从微观世界中的电子对传输到宇宙间的行星运动等。

img42
img45
上海来扬电气科技有限公司
电话:021-56774665, 021-56653661, 021-56774695, 021-66401707, 13801861238, 13564529000,    传真:021-56774695
地址:上海市汶水路8号  邮编:200072
沪ICP备09077764号-1
 
主营产品:高压开关测试仪校准装置三杯绝缘油介电强度测试仪三相微机控制继电保护测试仪真空开关真空度测试仪升流器核相仪